Differential-Boundary Operators
نویسندگان
چکیده
منابع مشابه
Ordinary Differential Operators under Stieltjes Boundary Conditions
The operator Lry = / + Py, whose domain is determined in part by the Stieltjes integral boundary condition Jo dv{i)y{f) = 0, is studied in Xj¡($>, 1), 1 < p < oo. It is shown that Lp has a dense domain; hence there exists a dual operator L* operating on .£¡¡(0,1). After finding LJ we show that both L, and L¡¡ are Fredholm operators. This implies some elementary results concerning the spectrum a...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملOn the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators
In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...
متن کاملDifferential equations involving causal operators with nonlinear periodic boundary conditions
The notion of causal operators is extended to periodic boundary value problems with nonlinear boundary conditions in this paper. By utilizing the monotone iterative technique and the method of lower and upper solutions (resp. weakly coupled lower and upper solutions), we establish the existence of the extremal solutions (resp. weakly coupled extremal quasi-solutions) for nonlinear periodic boun...
متن کاملReproducing kernels of Sobolev spaces via a green kernel approach with differential operators and boundary operators
We introduce a vector differential operator P and a vector boundary operator B to derive a reproducing kernel along with its associated Hilbert space which is shown to be embedded in a classical Sobolev space. This reproducing kernel is a Green kernel of differential operator L := P∗T P with homogeneous or nonhomogeneous boundary conditions given by B, where we ensure that the distributional ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1971
ISSN: 0002-9947
DOI: 10.2307/1995455